GravLens

Renkun Kuang

History

Gravitational Lensing Theories Related Questions

Applications

Gravitational Lensing Theories, Questions and Applications

Renkun Kuang

Tsinghua University

December 7, 2019

Overview

History

Gravitational Lensing Theories

Related Questions

Applications

GravLens

Renkun Kuang

History

Gravitational Lensing Theories Related Questions Applications

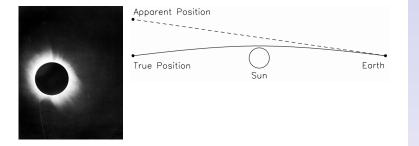
Predictions from Newtonian and GR

First proposed by Soldner (1801) using Newtonian theory, given a deflection angle (Appendix-1 (Page 77) for derivation). $\alpha = \frac{2GM}{c^2r}, 0.85 \text{ arcsec for the Sun}$

- Einstein (1911) derived the same result using Equivalence principle and Euclidean metric
- Einstein (1915) derived the new result using General Relativity.

 $\alpha = \frac{4GM}{c^2 r}$, 1.7 arcsec for the Sun

GravLens


Renkun Kuang

History

Gravitational Lensing Theories Related Questions

Eddington's observation of the Solar Eclipse

In 1919, Eddington measured a value close to GR's prediction using the data collected during an eclipse, stars with apparent position near the sun become visible.

Dyson, F.W., Eddington, A.S. and Davidson, C. (1920) https://royalsocietypublishing.org/doi/pdf/10.1098/rsta.1920.0009

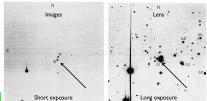
GravLens

Renkun Kuang

History

Gravitational Lensing Theories Related Questions

The first example for GravLens: 0957+561


• Eddington (1920): Multiple light paths \rightarrow multi images

▶ Walsh et al., (1979) quasar QSO 957+561 A,B found at $z \sim 1.4$, two seen images separated by $6^{''}$

Lens: evidence

- 1. Lensing galaxy at $z \sim 0.36$
- 2. Similar spectra
- 3. Ratio of optical and radio flux

4. VLBI imging: small scale features

GravLens

Renkun Kuang

History

Gravitational Lensing Theories Related Questions Applications

Walsh, Carswell & Weymann 1979, 0957+561 A, B: twin quasistellar objects or gravitational lens? https://ui.adsabs.harvard.edu/abs/1979Natur.279..381W/abstract

General Relaticity and light deflection

Einstein Field Equations:

$$G_{\mu\nu} = R_{\mu\nu} - \frac{1}{2}Rg_{\mu\nu} = \frac{8\pi G}{c^4}T_{\mu\nu}$$

• Geodesic equations:

$$\frac{d^2x^\beta}{d\lambda^2} + \Gamma^\beta_{\mu\nu} \frac{dx^\nu}{d\lambda} \frac{dx^\nu}{d\lambda} = 0$$

We can calculate how gravity bends light by solving geodesic eqution.

 To compute the Christoffel symbols Γ^β_{µν}, requires solving for the metric tensor g_{µν}, which requires solving the curvature equations R_{µν} = 0, ← ten nonlinear partial differential equations.

GravLens

Renkun Kuang

History

Gravitational Lensing Theories Related Questions Applications

General Relaticity and light deflection

- Or, the velocity of the photon from the Schwarzshild metric, $ds^2=-(1+2\Phi)dt^2+(1-2\Phi)(dx^2+dy^2+dz^2),$
 - ▶ and Poisson Equation, $\nabla^2 \Phi = 4\pi G \rho$,
 - ► and light interval: $g_{\mu\nu}\frac{dx^{\mu}}{d\lambda}\frac{dx^{\nu}}{d\lambda} = 0$
 - which gives,

$$v = \frac{\sqrt{dx^2 + dy^2 + dz^2}}{dt} = \sqrt{\frac{1 + 2\Phi}{1 - 2\Phi}} \approx 1 + 2\Phi$$

The gravitational field decreases the speed of propagation

GravLens

Renkun Kuang

History

Gravitational Lensing Theories

elated Questions

 $https://web.stanford.edu/\ oas/SI/SRGR/notes/SchwarzschildSolution.pdf,\ The\ SchwarzschildSolution$

General Relaticity and light deflection

$$v = \frac{\sqrt{dx^2 + dy^2 + dz^2}}{dt} = \sqrt{\frac{1 + 2\Phi}{1 - 2\Phi}} \approx 1 + 2\Phi \text{ (natural units)} \rightarrow v = c \left(1 + \frac{2}{c^2}\Phi\right) \text{ (SI)}$$

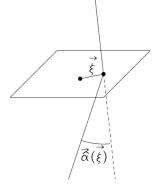
• define refraction index: $n = 1 - \frac{2}{c^2}\Phi = 1 + \frac{2}{c^2}|\Phi| \ge 1$

• deflection angle:
$$\vec{\hat{\alpha}} = -\int \vec{\nabla}_{\perp} n dl = \frac{2}{c^2} \int \vec{\nabla}_{\perp} \Phi dl$$

which is twice of the Newtonian prediction,

• for point mass lens,
$$\hat{\alpha} = \frac{4GM}{bc^2}$$

GravLens


Renkun Kuang

History

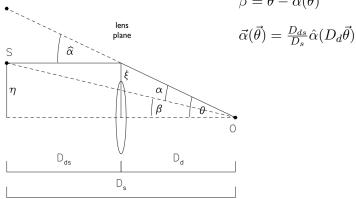
Gravitational Lensing Theories Related Questions

Thin screen approximation

- Most deflection occurs near to the lens (|z| ~ b) → treat all deflection as in the lens plane
- Projected surface density: $\Sigma(\vec{\xi}) = \int \rho(\vec{\xi}, z) dz$
- Deflection angle: $\hat{\alpha}(\vec{\xi}) = \frac{4G}{c^2} \int \frac{(\vec{\xi} - \vec{\xi'})\Sigma(\vec{\xi'})}{|\vec{\xi} - \vec{\xi'}|^2} d^2 \vec{\xi'}$
- ► In circular symmetry cases: $\hat{\alpha}(\xi) = \frac{4GM(\xi)}{c^2\xi}$ $M(\xi) = 2\pi \int_0^{\xi} \Sigma(\xi')\xi' d\xi'$

GravLens

Renkun Kuang

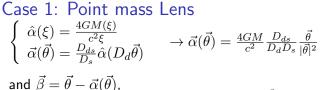

History

Gravitational Lensing Theories

oplications

The Lens Equation

Connecting the position of images in the Lens plane and corresponding sources the Source plane.

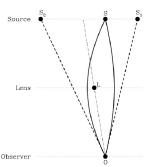


$$\vec{\beta} = \vec{\theta} - \vec{\alpha}(\vec{\theta})$$

GravLens

Renkun Kuang

Gravitational Lensing Theories


if $\beta = 0$, gives the Einstein Radius,

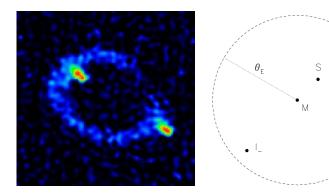
$$\theta_E = \sqrt{\frac{4GM}{c^2} \frac{D_{ds}}{D_d D_s}}$$

The Lens equation: $\vec{\beta} = \vec{\theta} - \theta_E^2 \frac{\vec{\theta}}{|\vec{\theta}|^2}$

- ▶ if $\beta > \theta_E \rightarrow$, weakly lensed and weakly distorted image,
- ▶ if $\beta < \theta_E \rightarrow$, stronly lensed and multi images:

$$\theta_{\pm} = \frac{1}{2} \left(\beta \pm \sqrt{\beta^2 + 4\theta_E^2} \right)$$

GravLens


Renkun Kuang

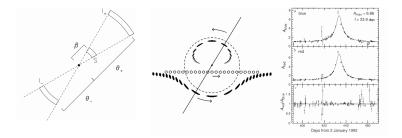
History

Gravitational Lensing Theories

Case 1: Point mass Lens

Hewitt+ 1987, First Einstein Ring discovered in Radio Band & VLA

GravLens


Renkun Kuang

History

Gravitational Lensing Theories Related Questions

Magnification

Gravitational lensing preserves surface brightness (Liouville's Theorem), but changes the apparent solid angle of the source $\rightarrow magnification = \frac{Area_{image}}{Area_{source}}$

Possible Gravitational Microlensing of a Star in the Large Magellanic Cloud https://arxiv.org/pdf/astro-ph/9309052v1.pdf

GravLens

Renkun Kuang

History

Gravitational Lensing Theories

Related Questions

Magnification

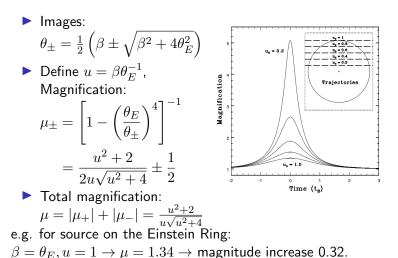
Local properties of the lens mapping, described by its Jacobian matrix $\ensuremath{\mathsf{A}}$

$$A \equiv \frac{\partial \vec{\beta}}{\partial \vec{\theta}} = \left(\delta_{ij} - \frac{\partial \alpha_i(\vec{\theta})}{\partial \theta_j}\right) = \left(\delta_{ij} - \frac{\partial^2 \Psi(\vec{\theta})}{\partial \theta_i \partial \theta_j}\right)$$
$$\mu = \left|\det\left(\frac{\partial \vec{\beta}}{\partial \vec{\theta}}\right)\right|^{-1} \equiv \left|\det\left(\frac{\partial \beta_i}{\partial \theta_j}\right)\right|^{-1}$$

If circularly symmetric,

$$\mu = \frac{\theta}{\beta} \frac{d\theta}{d\beta}$$

GravLens


Renkun Kuang

History

Gravitational Lensing Theories

and in a time

Case 1: Point mass Lens - Magnification

GravLens

Renkun Kuang

History

Gravitational Lensing Theories

Related Questions

Shapiro time delay

- Passage through potential also leads to time delay
- without potential: $t_0 = \int \frac{dl}{c}$

with potential:

$$t_1 = \int_{src}^{obs} \frac{dl}{v} = \int_{src}^{obs} \frac{dl}{c - \frac{2}{c}|\Phi|}$$

$$= \int_{src}^{obs} \frac{dl/c}{1 - \frac{2}{c^2}|\Phi|} = \int_{src}^{obs} \frac{dl}{c} [1 + \frac{2}{c^2}|\Phi|]$$

▶ so,
$$\Delta t = \int_{src}^{obs} \frac{2}{c^3} |\Phi| dl \rightarrow$$
 Shapiro delay (1964)

Total time delay is the sum of the extra path length from the deflection and the gravitational time delay

$$t(\vec{\theta}) = \frac{1 + z_d}{c} \frac{D_d D_s}{D_{ds}} [\frac{1}{2} (\vec{\theta} - \vec{\beta})^2 - \psi \vec{\theta}] = t_{geom} + t_{grav}$$

GravLens

Renkun Kuang

History

Gravitational Lensing Theories Related Questions

Case 2: Singular Isothemal Sphere (SIS)

- Galaxy lenses, the distributed nature of mass
- ► Simple model assumes that mass → particles of ideal gas
- ideal gas:
 - equation of state: $p = \frac{\rho kT}{m}$
 - ▶ In thermal equilibrium, T is related to the 1-d velocity dispersion: $m\sigma_v^2 = kT$

$$\frac{p'}{\rho} = -\frac{GM(r)}{r^2}, M'(r) = 4\pi r^2 \rho$$

- solve the EOS \rightarrow density profile: $\rho(r) = \frac{\sigma_v^2}{2\pi G} \frac{1}{r^2}$
- so mass profile: $M(r) = \frac{2\sigma_v^2}{G}$

GravLens

Renkun Kuang

History

Gravitational Lensing Theories Related Questions

Case 2: Singular Isothemal Sphere (SIS)

For ideal gas, rotational velocity in circular orbit: $\frac{p^{'}}{\rho}=-\frac{GM(r)}{r^{2}}, M^{'}(r)=4\pi r^{2}\rho$

Surface mass density:

$$v_{rot}^{2} = GM/r \rightarrow$$

$$dM = \frac{v_{rot}^{2}}{G}dr = 4\pi r^{2}\rho(r) \rightarrow$$

$$\rho(r) = \frac{v_{rot}^{2}}{4\pi G}\frac{dr}{r^{2}} \rightarrow$$

$$\Sigma(\xi) = \frac{v_{rot}^{2}}{4\pi G}\int_{-\infty}^{\infty}\frac{dz}{(z+\xi)^{2}} = \frac{v_{rot}^{2}}{4G\xi} = \frac{\sigma_{v}^{2}}{2G\xi}$$

where, $M(\xi) = 2\pi \int_0^{\xi} \Sigma(\xi') \xi' d\xi'$, and $\hat{\alpha}(\xi) = \frac{4GM(\xi)}{c^2\xi}$ which gives: $\hat{\alpha} = 4\pi \frac{\sigma_v^2}{c^2}$

GravLens

Renkun Kuang

History

Gravitational Lensing Theories

Related Questions

Case 2: Singular Isothemal Sphere (SIS)

using
$$\begin{cases} \hat{\alpha} = 4\pi \sigma_v^2/c^2 \\ \vec{\alpha}(\vec{\theta}) = \hat{\alpha}(D_d\vec{\theta})D_{ds}/D_s \end{cases}$$

and lens equation $\vec{\beta} = \vec{\theta} - \vec{\alpha}(\vec{\theta})$

we can get:

$$\alpha = \hat{\alpha} \frac{D_{ds}}{D_s} = 4\pi \frac{\sigma_v^2}{c^2} \frac{D_{ds}}{D_s} = \theta_E$$

GravLens

Renkun Kuang

History

Gravitational Lensing Theories

Related Questions

Applications

for strong lensing, get two images as for point mass:

$$\vec{\beta} = \vec{\theta} - \theta_E \frac{\vec{\theta}}{|\vec{\theta}|}, \frac{\vec{\theta}}{|\vec{\theta}|} = \pm 1 \rightarrow \theta_{\pm} = \beta \pm \theta_E$$

Magnification can be very large for source aligned with lens, from $\mu = \frac{\theta}{\beta} \frac{d\theta}{d\beta} \rightarrow$:

$$\mu_{\pm} = \frac{\theta_{\pm}}{\beta} = 1 \pm \frac{\theta_E}{\beta} = \left(1 \mp \frac{\theta_E}{\theta_{\pm}}\right)^-$$

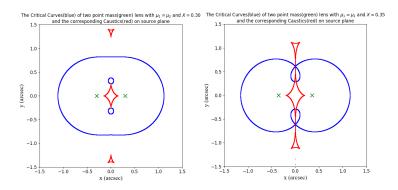
Separation of the two images is typically \sim arcsec for galaxy lenses:

$$\theta_E = 1''.6 \left(\frac{\sigma_v}{200 km s^{-1}}\right)^2 \left(\frac{D_{ds}}{D_s}\right)$$

Notice: in general the core of a galaxy would not be singular

Caustics and Critical lines

• Grav Lens changes the observed brightness of the source, determined by the Jacobian matrix from the lens equation: $A \equiv \frac{\partial \vec{\beta}}{\partial \vec{\theta}} = \left(\delta_{ij} - \frac{\partial \alpha_i(\vec{\theta})}{\partial \theta_j}\right) = \left(\delta_{ij} - \frac{\partial^2 \Psi(\vec{\theta})}{\partial \theta_i \partial \theta_j}\right)$ $\mu(\theta) = \frac{1}{detA(\theta)}$ GravLens


Renkun Kuang

History

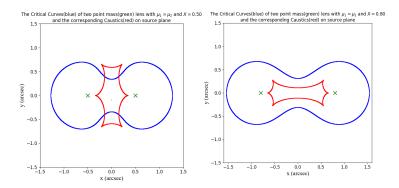
Gravitational Lensing Theories Related Questions

- \blacktriangleright Image at $\vec{\theta}$ is magnified by a factor of $|\mu(\vec{\theta})|$
- Notice that |µ(θ)| diverge at detA(θ) = 0 → these points in the image plane form closed curves, which is so called critical lines.
- Corresponding curves in the source plane obtained via the lens equation are called caustics.

Separation 0.6, 0.7:

GravLens

Renkun Kuang


History

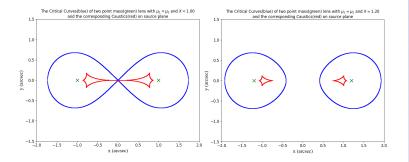
Gravitational Lensing Theories

Related Questions

https://github.com/rkkuang/aeroastro/blob/master/gravlen/critical.and.caustics/ The two-point-mass lens - Detailed investigation of a special asymmetric gravitational lens http://adsabs.harvard.edu/abs/1986A%26A...164..2375

Separation 1.0, 1.6:

GravLens


Renkun Kuang

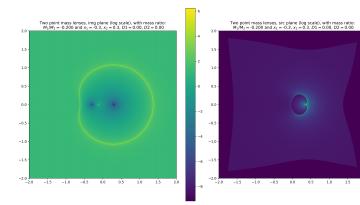
History

Gravitational Lensing Theories

Related Questions

Separation 2.0, 2.4:

GravLens


Renkun Kuang

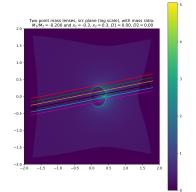
History

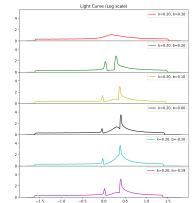
Gravitational Lensing Theories

Related Questions

Separation 0.6'', mass ratio: -0.2:

GravLens


Renkun Kuang

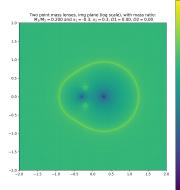

History

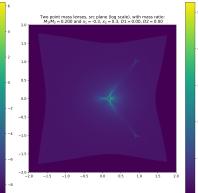
2.0

Gravitational Lensing Theories Related Questions

Separation 0.6'', mass ratio: -0.2:

GravLens

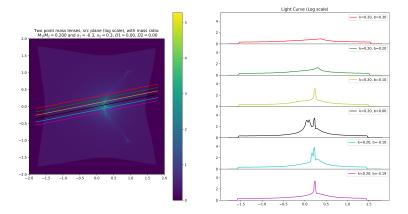

Renkun Kuang


History

Gravitational Lensing Theories

Related Questions

Separation 0.6'', mass ratio: +0.2:


GravLens

Renkun Kuang

History

Gravitational Lensing Theories Related Questions Applications

Separation 0.6'', mass ratio: +0.2:

GravLens

Renkun Kuang

History

Gravitational Lensing Theories

Related Questions

Separation 0.6'', mass ratio from $1 \rightarrow -0.6$: the change of the Caustics: Movie and for separation 1'', separation 2''.

GravLens

Renkun Kuang

History

Gravitational Lensing Theories

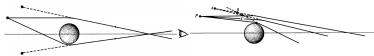
Related Questions

GravLens

Renkun Kuang

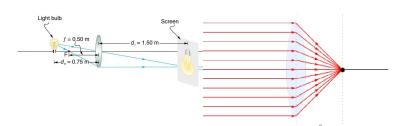
History

Gravitational Lensing Theories


Related Questions

Applications

Separation 0.6'', mass ratio = 1, the two point mass lenses located at different redshifts, the change of the Caustics: Movie


Gravitational Lens vs Genuine Lens

 \blacktriangleright Grav lens: the observer sees the source at two distinct locations, $\alpha \propto b^{-1}$

Grav lens has no well-defined focal length and cannot produce genuine images, the "images" are corresponds merely to a direction of incidence of light on the observer, not a genuine image in the sky

▶ Genuine lens, $\alpha \propto b$

GravLens

Renkun Kuang

History

Gravitational Lensing Theories

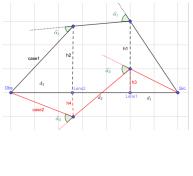
Related Questions

30 / 77

A galaxy at redshift 0.5 can be modelled as a singular isothermal sphere; its dispersion is 200km/s. A background source at redshift 2 is lensed by the foreground galaxy into two images with a brightness ratio of 3:1, what are the angular separation and time delay between the two images? You can assume the usual cosmology.

First assume $H_0 = 69.6 km s^{-1}$, $\Omega_m = 0.286$, $\Omega_{vac} = 0.714$ then the distance of z = 0.5 and z = 2 can be computed, using theories of SIS model and the time delay function we can estimate the angular separation ~ 1.2 arcsec and time delay ~ 45 days

GravLens


Renkun Kuang

History

Gravitational Lensing Theories

Related Questions

Two (N=2) galaxies are aligned perfectly with the Earth and a distant quasar. Each galaxy can be modelled as a singular isothermal sphere. How many Einstein rings are formed as a result? How will your results generalize when you have N > 2 galaxies?

For N galaxies, the quasar will render 2^{N-1} Einstein rings, and if we consider galaxy lensed by galaxy, will generate (at most) $\sum_{i=1}^{N-1} 2^{i-1}$ more, so the total number of Einstein rings rendered by N galaxies and a quasar will be: $\sum_{i=1}^{N} 2^{i-1} = 2^N - 1$, at most.

GravLens

Renkun Kuang

History

Gravitational Lensing Theories

Related Questions

A background source is multiply-imaged, can the brightest image arrive last?

Using the relation between effective lensing potential and magnification & time delay Effective lensing potential: $\Psi(\vec{\theta}) = \frac{D_{ds}}{D_d D_s} \frac{2}{c^2} \int \Phi(D_d \vec{\theta}, z) dz, \ \vec{\nabla}_{\theta} \Psi = \vec{\alpha}$

Jacobian matrix:
$$A = \frac{\partial \vec{\beta}}{\partial \vec{\theta}} = \delta_{ij} - \frac{\partial^2 \Psi(\vec{\theta})}{\partial \vec{\theta}_i \partial \vec{\theta}_j} \equiv \delta_{ij} - \Psi_{ij}$$

$$\begin{array}{l} \text{Magnification: } \mu = |detA|^{-1} \\ \text{time delay: } t(\vec{\theta}) = \frac{1+z_d}{c} \frac{D_d D_s}{D_{ds}} \left[\frac{1}{2} (\vec{\theta} - \vec{\beta})^2 - \Psi(\vec{\theta}) \right] \\ \mu \leftarrow \Psi \rightarrow t \end{array}$$

Simulation, under a potential, given a $\vec{\beta}$, solve the lens equation for $\vec{\theta_i}$ see if $\vec{\theta_k}$ which has maximum magnification also have largest time delay

GravLens

Renkun Kuang

listory

Gravitational Lensing Theories

Related Questions

34 / 77

Question 3

A background source is multiply-imaged, can the brightest image arrive last?

► N point mass, same redshift (single plane). Effective lensing potential: $r_{i}(\vec{Q}) = \frac{Dds}{4G} \sum_{i=1}^{N} M \ln |\vec{Q}| = \vec{x}^{+1}$

 $\psi(\vec{\theta}) = \frac{D_{ds}}{D_s} \frac{4G}{D_d c^2} \sum_{i=1}^N M_i ln |\vec{\theta} - \vec{p}_i|$

The deflection angle:

$$\alpha(\vec{\theta}) = \frac{D_{ds}}{D_s} \frac{4G}{D_d c^2} \sum_{i=1}^N \frac{M_i}{|\vec{\theta} - \vec{p}_i|}$$

where M_i, \vec{p}_i are the mass and position of the i_{th} point mass. Above equations can be rewritten with the Einstein Radius θ_{Ei} of the i_{th} point mass as:

$$\begin{aligned} \psi(\vec{\theta}) &= \sum_{i=1}^{N} \theta_{Ei}^2 ln |\vec{\theta} - \vec{p_i}| \\ \alpha(\vec{\theta}) &= \sum_{i=1}^{N} \theta_{Ei}^2 (\vec{\theta} - \vec{p_i}) \\ |\vec{\theta} - \vec{p_i}|^2 \end{aligned}$$

The lens equation:

$$\vec{\beta} = \vec{\theta} - \alpha(\vec{\theta})$$

GravLens

Renkun Kuang

History

Gravitational Lensing Theories

Related Questions

A background source is multiply-imaged, can the brightest image arrive last?

N point mass, same redshift (single plane). Components of the Jacobian matrix A: $A_{11} = 1 - \sum_{i=1}^{N} \theta_{Fi}^2 \left[r^{-2} - 2(\theta_x - p_{ix})^2 r^{-4} \right]$ $A_{12} = A_{21} = 2\sum_{i=1}^{N} \theta_{Fi}^2 \left[(\theta_x - p_{ix})(\theta_y - p_{iy})r^{-4} \right]$ $A_{22} = 1 - \sum_{i=1}^{N} \theta_{E_i}^2 \left[r^{-2} - 2(\theta_y - p_{iy})^2 r^{-4} \right]$ where $r = |\vec{\theta} - \vec{p_i}|$ Thus the magnification can be written as: $\mu = (A_{11}A_{22} - A_{12}A_{21})^{-1}$ Time delay: $t(\vec{\theta}) \propto \frac{1}{2}(\vec{\theta} - \vec{\beta})^2 - \psi(\vec{\theta})$ So, after solve the lens equation: $\vec{\beta} = \vec{\theta} - \sum_{i=1}^{N} \frac{\theta_{Ei}^2(\vec{\theta} - \vec{p_i})}{|\vec{\theta} - \vec{\sigma}|^2}$,

we can compare the resultant images' magnification and time delay, see if the brightest image arrive last.

GravLens Renkun Kuang

listory

Gravitational Lensing Theories

Related Questions

Question 3 A background source is multiply-imaged, can the brightest image arrive last?

 $\blacktriangleright If N = 1,$

for $\beta > 0$, there will be two images, $\theta_{\pm} = \frac{1}{2} \left(\beta \pm \sqrt{\beta^2 + 4\theta_E^2} \right)$, we can obtain the time delay difference $t_- - t_+ = \frac{1}{2}\beta \sqrt{\beta^2 + 4\theta_E^2} + ln \frac{(\sqrt{\beta^2 + 4\theta_E^2} + \beta)^2}{4\theta_E^2} > 0$ always holds, thus the brightest image always arrive first. GravLens

Renkun Kuang

History

Gravitational Lensing Theories

Related Questions

Question 3

A background source is multiply-imaged, can the brightest image arrive last?

• If
$$N > 1 \rightarrow$$
 test by coding:
def $a_i = \theta_{Ei}^2$, the system of lens equations:

$$\begin{cases}
\beta_x = \theta_x - \sum_{i=1}^N a_i(\theta_x - p_{ix})/r^2 \\
\beta_y = \theta_y - \sum_{i=1}^N a_i(\theta_y - p_{iy})/r^2 \\
r^2 = (\theta_x - p_{ix})^2 + (\theta_y - p_{iy})^2
\end{cases}$$

- Outer loop: For a lens system of N point mass with fixed θ_{Ei}, (p_{ix}, p_{iy})
- Inner loop: Given a source position (β_x, β_y), solve above system of equations for M images: (θ_{xj}, θ_{yj}) and compute corresponding μ_j, t_j, check if there exists a k which satisfies μ_k = max(μ) & t_k = max(t)

GravLens

Renkun Kuang

listory

Gravitational Lensing Theories

Related Questions

GravLens

Renkun Kuang

History

Gravitational Lensing Theories

Related Questions

Applications

• If $N > 1 \rightarrow$ test by coding:

Yes, the brightest image can arrive last when merely N = 2.

Question 3 A background source is multiply-imaged, can the brightest image arrive last?

Question 4

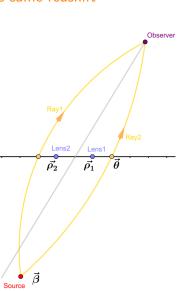
Study the caustics and critical curves of two singular isothermal spheres lensing a background quasar. Study two cases 1) Both galaxies are at the same redshift and, 2) these two galaxies are at different redshifts.

Mass density \rightarrow Surfacce mass density \rightarrow Effective lensing potential \rightarrow Jacobian matrix \rightarrow Magnification draw those points which make magnification largest \rightarrow critical lens \rightarrow caustics

GravLens

Renkun Kuang

History


Gravitational Lensing Theories

Related Questions

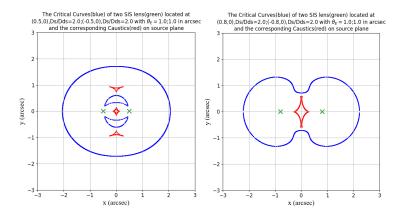
Question 4 case 1) Both galaxies are at the same redshift

$$\vec{\alpha}(\vec{\theta}) = \theta_{E1} \frac{\vec{\theta} - \vec{\rho_1}}{|\vec{\theta} - \vec{\rho_1}|} + \theta_{E2} \frac{\vec{\theta} - \vec{\rho_2}}{|\vec{\theta} - \vec{\rho_2}|}$$
where $\vec{\rho_1}, \vec{\rho_2}$ are positions of Lens1, Lens2 on the lens plane. $\vec{\beta} = \vec{\theta} - \vec{\alpha}(\vec{\theta})$

$$A = \frac{\partial \vec{\beta}}{\partial \vec{\theta}} = \left(\delta_{ij} - \frac{\partial \alpha_i(\vec{\theta})}{\partial \theta_j}\right)$$
$$\mu(\vec{\theta}) = \frac{1}{\det A(\vec{\theta})}$$

GravLens

Renkun Kuang


listory

Gravitational ensing Theories

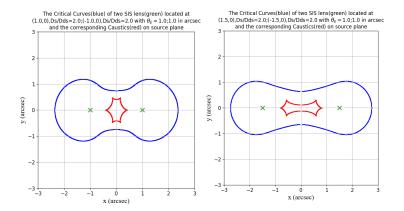
Related Questions

Question 4 case 1) Both galaxies are at the same redshift

Two SIS lenses (
$$\theta_E = 1.0^{''}$$
), separation $1.0^{''}, 1.6^{''}$

GravLens

Renkun Kuang


History

Gravitational Lensing Theories

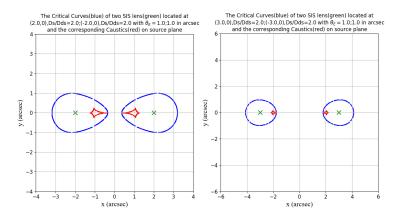
Related Questions

Question 4 case 1) Both galaxies are at the same redshift

Two SIS lenses (
$$heta_E = 1.0^{''}$$
), separation $2.0^{''}, 3.0^{''}$

GravLens

Renkun Kuang


History

Gravitational Lensing Theories

Related Questions

Question 4 case 1) Both galaxies are at the same redshift

Two SIS lenses (
$$heta_E = 1.0^{''}$$
), separation $4.0^{''}, 6.0^{''}$

GravLens

Renkun Kuang

History

Gravitational Lensing Theories

Related Questions

Question 4

case 2) these two galaxies are at different redshifts

Lens equations of two lens planes system:

$$\begin{split} \vec{\eta} &= \frac{D_s}{D_1} \vec{\xi}^{(1)} - D_{1s} \vec{\alpha}^{(1)} \left(\vec{\xi}^{(1)}\right) - D_{2s} \vec{\alpha}^{(2)} \left(\vec{\xi}^{(2)}\right) \\ \vec{\xi}^{(2)} &= \frac{D_2}{D_1} \vec{\xi}^{(1)} - D_{12} \vec{\alpha}^{(1)} \left(\vec{\xi}^{(1)}\right) \\ \text{For two point mass lenses:} \\ \vec{\alpha}^{(1)} \left(\vec{\xi}^{(1)}\right) &= \frac{4GM_1}{c^2} \frac{\vec{\xi}^{(1)}}{|\vec{\xi}^{(1)}|^2}, \\ \vec{\alpha}^{(2)} \left(\vec{\xi}^{(2)}\right) &= \frac{4GM_2}{c^2} \frac{\vec{\xi}^{(2)} - \vec{\xi}^{(2)}_{M_2}}{|\vec{\xi}^{(2)} - \vec{\xi}^{(2)}_{M_2}|^2} \\ \text{For two SIS lenses:} \\ \vec{\alpha}^{(1)} \left(\vec{\xi}^{(1)}\right) &= \frac{4\pi\sigma_{v1}^2}{c^2} \frac{\vec{\xi}^{(1)}}{|\vec{\xi}^{(1)}|}, \\ \vec{\alpha}^{(2)} \left(\vec{\xi}^{(2)}\right) &= \frac{4\pi\sigma_{v2}^2}{c^2} \frac{\vec{\xi}^{(2)} - \vec{\xi}^{(2)}_{M_2}}{|\vec{\xi}^{(2)} - \vec{\xi}^{(2)}_{M_2}|} \end{split}$$

GravLens

Renkun Kuang

History

Gravitational Lensing Theories

Related Questions

Applications

Ds D15 D25

D2 D12

D.

F(2)

a(2)

For two SIS lenses:

$$\vec{\alpha}^{(1)}\left(\vec{\xi}^{(1)}\right) = \frac{4\pi\sigma_{v1}^2}{c^2}\frac{\vec{\xi}^{(1)}}{|\vec{\xi}^{(1)}|},$$

$$\vec{\alpha}^{(2)}\left(\vec{\xi}^{(2)}\right) = \frac{4\pi\sigma_{v2}^2}{c^2}\frac{\vec{\xi}^{(2)}-\vec{\xi}_{M_2}^{(2)}}{|\vec{\xi}^{(2)}-\vec{\xi}_{M_2}^{(2)}|}$$

Rearrange these equations:

$$\begin{split} \vec{y} &= \vec{x} - m_1 \frac{\vec{x}}{|\vec{x}|} - m_2 \frac{\vec{t} - \vec{\rho}}{|\vec{t} - \vec{\rho}|} \\ \vec{t} &= \vec{x} - m_1 \beta \frac{\vec{x}}{|\vec{x}|} \\ \text{where } m_1 &= D_{1s} \theta_1, \ m_2 = D_{2s} \theta_2, \ \beta &= D_{12} / (D_2 D_{1s}), \\ \vec{\xi}^{(2)} &= D_2 \vec{t}, \ \vec{\xi}_{M_2}^{(2)} &= D_2 \vec{\rho}, \ \vec{\xi}^{(1)} &= D_1 \vec{x}, \ \vec{\eta} = D_s \vec{y}, \\ \theta_i &= \frac{4\pi \sigma_{vi}^2}{c^2} = 1''.6 \left(\frac{\sigma_{vi}}{200 km/s}\right)^2 \\ \text{Thus the Jacobian matrix of this two lenses system:} \\ A &= \frac{\partial \vec{y}}{\partial \vec{x}} \\ \mu(\vec{x}) &= \frac{1}{detA(\vec{x})} \end{split}$$

GravLens

Renkun Kuang

History

Gravitational Lensing Theories

Related Questions

• Obesever, Lens1, Lens2 are on a line, e.g.
$$\vec{\rho} = (0,0)$$
, and $D_1 = 1, D_2 = 1, D_s = 2$

GravLens

Renkun Kuang

History

Gravitational Lensing Theories

Related Questions

• Obesever, Lens1, Lens2 are on a line, e.g.
$$\vec{\rho} = (0,0)$$
, and $D_1 = 1, D_2 = 1.2, D_s = 2$

GravLens

Renkun Kuang

History

Gravitational Lensing Theories

Related Questions

•
$$\vec{\rho} = (0.8, 0)$$
, and $D_1 = 1, D_2 = 1, D_s = 2$

GravLens

Renkun Kuang

History

Gravitational Lensing Theories

Related Questions

•
$$\vec{\rho} = (0.8, 0)$$
, and $D_1 = 1, D_2 = 1.2, D_s = 2$

GravLens

Renkun Kuang

History

Gravitational Lensing Theories

Related Questions

•
$$\vec{\rho} = (0.8, 0)$$
, and $D_1 = 1, D_2 = 1.6, D_s = 2$

GravLens

Renkun Kuang

History

Gravitational Lensing Theories

Related Questions

•
$$\vec{\rho} = (0.8, 0)$$
, and $D_1 = 1, D_2 = 1.8, D_s = 2$

GravLens

Renkun Kuang

History

Gravitational Lensing Theories

Related Questions

• $\vec{\rho} = (0.8, 0)$, and $D_1 = 1, D_2 = 1.96, D_s = 2$

GravLens

Renkun Kuang

History

Gravitational Lensing Theories

Related Questions

•
$$\vec{\rho} = (0.8, 0)$$
, and $D_1 = 0.5, D_2 = 1, D_s = 2$

GravLens

Renkun Kuang

History

Gravitational Lensing Theories

Related Questions

•
$$\vec{\rho} = (0.8, 0)$$
, and $D_1 = 0.2, D_2 = 1.6, D_s = 2$

GravLens

Renkun Kuang

History

Gravitational Lensing Theories

Related Questions

• $\vec{\rho} = (2,0)$, and $D_1 = 1, D_2 = 1, D_s = 2$

GravLens

Renkun Kuang

History

Gravitational Lensing Theories

Related Questions

• $\vec{\rho} = (2,0)$, and $D_1 = 1, D_2 = 1.2, D_s = 2$

GravLens

Renkun Kuang

History

Gravitational Lensing Theories

Related Questions

• $\vec{\rho} = (2,0)$, and $D_1 = 1, D_2 = 1.4, D_s = 2$

GravLens

Renkun Kuang

History

Gravitational Lensing Theories

Related Questions

• $\vec{\rho} = (2,0)$, and $D_1 = 1, D_2 = 1.6, D_s = 2$

GravLens

Renkun Kuang

History

Gravitational Lensing Theories

Related Questions

• $\vec{\rho} = (2,0)$, and $D_1 = 1, D_2 = 1.8, D_s = 2$

GravLens

Renkun Kuang

History

Gravitational Lensing Theories

Related Questions

• $\vec{\rho} = (2,0)$, and $D_1 = 1, D_2 = 1.96, D_s = 2$

GravLens

Renkun Kuang

History

Gravitational Lensing Theories

Related Questions

• $\vec{\rho} = (2,0)$, and $D_1 = 0.2, D_2 = 1, D_s = 2$

GravLens

Renkun Kuang

History

Gravitational Lensing Theories

Related Questions

•
$$\vec{\rho} = (2,0)$$
, and $D_1 = 0.2, D_2 = 1.6, D_s = 2$

GravLens

Renkun Kuang

History

Gravitational Lensing Theories

Related Questions

•
$$\vec{\rho} = (2,0)$$
, and $D_1 = 0.2, D_2 = 1.8, D_s = 2$

GravLens

Renkun Kuang

History

Gravitational Lensing Theories

Related Questions

•
$$\vec{\rho} = (3,0)$$
, and $D_1 = 1, D_2 = 1, D_s = 2$

GravLens

Renkun Kuang

History

Gravitational Lensing Theories

Related Questions

• $\vec{\rho} = (3,0)$, and $D_1 = 1, D_2 = 1.4, D_s = 2$

GravLens

Renkun Kuang

History

Gravitational Lensing Theories

Related Questions

• $\vec{\rho} = (3,0)$, and $D_1 = 1, D_2 = 1.6, D_s = 2$

GravLens

Renkun Kuang

History

Gravitational Lensing Theories

Related Questions

•
$$\vec{\rho} = (3,0)$$
, and $D_1 = 1, D_2 = 1.8, D_s = 2$

GravLens

Renkun Kuang

History

Gravitational Lensing Theories

Related Questions

•
$$\vec{\rho} = (3,0)$$
, and $D_1 = 0.2, D_2 = 1.6, D_s = 2$

GravLens

Renkun Kuang

History

Gravitational Lensing Theories

Related Questions

•
$$\vec{\rho} = (3,0)$$
, and $D_1 = 0.2, D_2 = 1.8, D_s = 2$

GravLens

Renkun Kuang

History

Gravitational Lensing Theories

Related Questions

• $\vec{\rho} = (3,0)$, and $D_1 = 0.5, D_2 = 1, D_s = 2$

GravLens

Renkun Kuang

History

Gravitational Lensing Theories

Related Questions

• $\vec{\rho} = (4,0)$, and $D_1 = 1, D_2 = 1, D_s = 2$

GravLens

Renkun Kuang

History

Gravitational Lensing Theories

Related Questions

• $\vec{\rho} = (6,0)$, and $D_1 = 1, D_2 = 1, D_s = 2$

GravLens

Renkun Kuang

History

Gravitational Lensing Theories

Related Questions

• $\vec{\rho} = (8,0)$, and $D_1 = 1, D_2 = 1, D_s = 2$

GravLens

Renkun Kuang

History

Gravitational Lensing Theories

Related Questions

Gravitational Lensing Applications

- Cosmic telescopes: distant, faint objects observation
- 2-d mass distribution of lenses, dark matter
- Hubble constant, cosmological constant, density parameter

•

GravLens

Renkun Kuang

History

Gravitational Lensing Theories

.....

GravLens

Renkun Kuang

History

Gravitational Lensing Theories

Related Questions

Applications

The End, Thanks!

References

- https://lacosmo.com/DeflectionOfLight/index.html
- The Mathematical Theory of Relativity, Arthur Stanley Eddington (P101)
- http://web.mit.edu/6.055/old/S2009/notes/bending-oflight.pdf
- https://www.mathpages.com/rr/s6-03/6-03.htm Gravitation and Spacetime, Hans C. Ohanian, Remo Ruffini. – 3rd ed
- https://en.wikipedia.org/wiki/Gauss%27s_law_for_gravity
- Lectures On Gravitational Lensing, Narayan & Bartelmann
- https://www.cfa.harvard.edu/ dfabricant/huchra/ay202/lectures/lecture12.pdf
- https://web.stanford.edu/ oas/SI/SRGR/notes/ SchwarzschildSolution.pdf

GravLens

Renkun Kuang

History

Gravitational Lensing Theories Related Questions

Appendix-1, Newtonian prediction

$$\begin{split} \phi(b,z) &= -\frac{GM}{(b^2+z^2)^{1/2}} \\ \alpha &= \frac{v_b}{c} = \frac{1}{c} \int \frac{d\Phi}{db} dt = \frac{1}{c^2} \int \frac{d\Phi}{db} dl \\ &\approx \frac{1}{c^2} \int \frac{d\Phi}{db} dz \\ &= \frac{GMb}{c^2} \int \frac{dz}{(b^2+z^2)^{3/2}} \\ &= \frac{GMb}{c^2} \left[\frac{z}{b^2 \sqrt{b^2+z^2}} \Big|_{-\infty}^{+\infty} \right] \\ &= \frac{2GM}{c^2b} \end{split}$$

not along the deflected ray but along z axis

Gravitational potential simplify the calculation by integrating

GravLens

Renkun Kuang

History

Gravitational Lensing Theories Related Questions

Applications

Δz