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Pxi: He devoted himself so strenuously that often he became so exhausted that
at night he could not sleep, still turning over formulae in his mind.

Later he used to describe how at that time he was amazed by the incredible
beauty of the general theory of relativity (sometimes he even would declare that
such a rapture on first making one’s acquaintance with this theory should be a
characteristic of any born theoretical physicist).
He also described the state of ecstasy to which he was brought on reading the
articles by Heisenberg and Schrodinger signaling the birth of the new quantum
mechanics. He said that he derived from them not only delight in the true glam-
our of science but also an acute realization of the power of the human genius, whose
greatest triumph is that man is capable of apprehending things beyond the pale of
his imagination. And of course, the curvature of space-time and the uncertainty
principle are precisely of this kind.

As early as 1927, he done a study of the problem of damping in quantum me-
chanics, which first introduced a description of the state of a system with the aid
of the density matrix.

The changes which occurred in him with the years and transformed him into a
buoyant and gregarious individual were largely a result of his characteristic self-
discipline and feeling of duty toward himself. These qualities, together with his
sober and self-critical mind, enabled him to train himself and to evolve into a
person with a rare ability — the ability to be happy. The same sobriety of mind
enabled him always to distinguish between what is of real value in life and what is
unimportant triviality, and thus also to retain his mental equilibrium during the
difficult moments which occurred in his life too.

In 1929, at the Institute of Theoretical Physics, theoretical physicists from all
Europe gathered round the great Niels Bohr and, during the famous seminars
headed by Bohr, discussed all the basic problems of the theoretical physics of the
time. This scientific atmosphere, enhanced by the charm of the personality of
Bohr himself, decisively influenced Landau in forming his own outlook on physics
and subsequently he always considered himself a disciple of Niels Bohr. He vis-
ited Copen- hagen two more times, in 1933 and 1934. Landau’s sojourn abroad
was the occasion, in particular, of his work on the theory of the diamagnetism of
an electron gas [4] and the study of the limitations imposed on the measurability
of physical quantities in the. relativistic quantum region (in collaboration with
Peierls) [6].
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Twentieth-century theoretical physics is rich in illustrious names of trail-blazing
creators, and Landau was one of these creators. But his influence on scientific
progress was far from exhausted by his personal contribution to it. He was not
only an outstanding physicist but also a genuinely outstanding educator, a born
educator. In this respect one may take the liberty of comparing Landau only to
his own teacher — Niels Bohr.

Landau always attached great importance to the mastering of mathematical tech-
niques by the theoretical physicist. ‘The degree of this mastery should be such
that, insofar as possible, mathematical complications would not distract attention
from the physical difficulties of the problem — at least whenever standard mathe-
matical techniques are concerned. ‘This can be achieved only by sufficient training.
Yet experience shows that the current style and programs for university instruction
in mathematics for physicists often do not ensure such training. Experience also
shows that after a physicist commences his independent research activity he finds
the study of mathematics too “boring”’.

Therefore, the first test which Landau gave to anyone who desired to become
one of his students was a quiz in mathematics in its “‘practical” calculational as-
pects.
(The requirements were: ability to evaluate any indefinite integral that can be
expressed in terms of elementary functions and to solve any ordinary differential
equation of the standard type, knowledge of vector analysis and tensor algebra as
well as of the principles of the theory of functions of a complex variable (theory
of residues, Laplace method). It was assumed that such fields as tensor analysis
and group theory would be studied together with the fields of theoretical physics
to which they apply.)
The successful applicant could then pass on to the study of the seven successive
sections of the program for the “theoretical minimum’, which includes basic knowl-
edge of all the domains of theoretical physics, and subsequently take an appropriate
examination. In Landau’s opinion, this basic knowledge should be mastered by
any theoretician regardless of his future specialization. Of course, he did not ex-
pect anyone to be as universally well-versed in science as he himself. But he thus
manifested his belief in the integrity of theoretical physics as a single science with
unified methods.

In a remarkable interaction with experimental research, Landau created what may
be the outstanding accomplishment of his scientific life — the theory of quantum
fluids.
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Lastly, in 1962 he was awarded the Nobel Prize in Physics ‘for his pioneering
theories for condensed matter, especially liquid helium’

Landau’s scientific influence was, of course, far from confined to his own disci-
ples. He was deeply democratic in his life as a scientist (and in his life as a human
being, for that matter; pomposity and deference to titles always remained foreign
to him). Anyone, regardless of his scientific merits and title, could ask Landau
for counsel and criticism (which were invariably precise and clear), on one con-
dition only: the question must be businesslike instead of pertaining to what he
detested most in science: empty Philosophizing or vapidity and futility cloaked in
pseudo-scientific sophistries. He had an acutely critical mind; this quality, along
with his approach from the standpoint of profound physics, made discussion with
him extremely attractive and useful.

In discussion he used to be ardent and incisive but not rude; witty and ironic
but not caustic. The nameplate which he hung on the door of his office at the
Ukrainian Physicotechnical Institute bore the inscription:
L. LANDAU

BEWARE, HE BITES!

With years his character and manner mellowed somewhat, but his enthusiasm

for science and his uncompromising attitude toward science remained unchanged.

And certainly his sharp exterior concealed a scientifically impartial

attitude, a great heart and great kindness. However harsh and unsparing

he may have been in his critical comments, he was just as intense in

his desire to contribute with his advice to another man’s success, and

his approval, when he gave it, was just as ardent.

These traits of Landau’s personality as a scientist and of his talent actually ele-
vated him to the position of a supreme scientific judge, as it were, over his students
and colleagues.
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There is no doubt that this side of Landau’s activities, his scientific and moral
authority which exerted a restraining influence on frivolity in research, has also
markedly contributed to the lofty level of our theoretical physics.
His constant scientific contact with a large number of students and colleagues also
represented to Landau a source of knowledge. A unique aspect of his style of work
was that, ever since long ago, since the Khar’kov years, he himself almost never
read any scientific article or book but nevertheless he was always completely au
courant with the latest news in physics.

He derived this knowledge from numerous discussions and from the papers pre-
sented at the seminar held under his direction. ‘ This seminar was held regularly
once a week for nearly 30 years, and in the last years its sessions became gath-
erings of theoretical physicists from all Moscow. ‘The presentation of papers at
this seminar became a sacred duty for all students and co-workers, and Landau
himself was extremely serious and thorough in selecting the material to be pre-
sented. He was interested and equally competent in every aspect of physics and
the participants in the seminar did not find it easy to follow his train of thought in
instantaneously switching from the discussion of, say, the properties of “strange”
particles to the discussion of the energy spectrum of electrons in silicon. ‘l’o Lan-
dau himself listening to the papers was never an empty formality: he did not rest
until the essence of a study was completely elucidated and all traces of “philology”
— unproved statements or propositions made on the principle of “why might it
not” — therein were eliminated. As a result of such discussion and criticism many
studies were condemned as “pathology” and Landau completely lost interest in
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them. On the other hand, articles that really contained new ideas or findings were
included in the so-called “gold fund” and remained in Landau’s memory for ever.
In fact, usually it was sufficient for him to know just the guiding idea of a study in
order to reproduce all of its findings. As a rule, he found it easier to obtain them
on his own than to follow in detail the author’s reasoning. In this way he repro-
duced for himself and profoundly thought out most of the basic results obtained
in all the domains of theoretical physics. This probably also was the reason for
his phenomenal ability to answer practically any question concerning physics that
might be asked of him.

Landau’s scientific style was free of the — unfortunately fairly widespread — ten-
dency to complicate simple things (often on the grounds of generality and rigour
which, however, usually turn out to be illusory). He himself always strove towards
the opposite — to simplify complex things, to uncover in the most lucid manner
the genuine simplicity of the laws underlying the natural phenomena. This ability
of his, this skill at “trivializing” things as he himself used to say, was to him a
matter of special pride.
The striving for simplicity and order was an inherent part of the structure of Lan-
dau’s mind. It manifested itself not only in serious matters but also in semi-serious
things as well as in his characteristic personal sense of humor. Thus, he liked to
classify everyone, from women according to the degree of their beauty, to theoreti-
cal physicists according to the significance of their contribution to science. This last
classification was based on a logarithmic scale of five: thus, a second-class physicist
supposedly accomplished 10 times as much as a third-class physicist (”pathological
types” were ranked in the fifth class). On this scale Einstein occupied the position
1
2
, while Bohr, Heisenberg, Schrodinger, Dirac and certain others were ranked in

the first class. Landau modestly ranked himself for a long time in class 21
2

and it
was only comparatively late in his life that he promoted himself to the second class.

He always worked hard (never at a desk, usually reclining on a divan at home).
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At any rate there is no doubt that his drive for work was inherently motivated
not by desire for fame but by an inexhaustible curiosity and passion for exploring



10

the laws of nature in their large and small manifestations. He never omitted a
chance to repeat the elementary truth that one should never work for extraneous
purposes, work merely for the sake of making a great discovery, for then nothing
would be accomplished anyway.

The range of Landau’s interests outside physics also was extremely wide. In addi-
tion to the exact sciences he loved history and was well-versed in it. He was also
passionately interested in and deeply impressed by every genre of fine arts, though
with the exception of music (and ballet).
Those who had the good fortune to be his students and friends for many years
knew that our Dau, as his friends and comrades nicknamed him, did not grow old.
In his company boredom vanished. The brightness of his personality never grew
dull and his scientific power remained strong. All the more senseless and frightful
was the accident which put an end to his brilliant activity at its zenith.

Landau’s articles, as a rule, display all the features of his characteristic scien-
tific style: clarity and lucidity of physical statement of problems, the shortest and
most elegant path towards their solution, no superfluities. Even now, after many
years, the greater part of his articles does not require any revisions.

A characteristic feature of Landau’s scientific creativity is its almost unprecedented
breadth, which encompasses the whole of theoretical physics, from hydrodynamics
to the quantum field theory. In our century, which is a century of increasingly
narrow specialization, the scientific paths of his students also have been gradually
diverging, but Landau himself unified them all, always retaining a truly astound-
ing interest in everything. It may be that in him physics has lost one of the last
great universalists.

These include, in the first place, several of his early works. In the course of his
studies of the radiation-damping problem he was the first to introduce the con-
cept of incomplete quantum-mechanical description accomplished with the aid of
quantities which were subsequently termed the density matrix [2]. In this article
the density matrix was introduced in its energy representation.

Of no smaller virtuosity was Landau’s work dealing with the elaboration of Fermi’s
idea of the statistical nature of multiple particle production in collisions [74]. This
study also represents a brilliant example of the methodological unity of theoretical
physics in which the solution of a problem is accomplished by using the methods
from a seemingly completely different domain. Landau showed that the process of
multiple production includes the stage of the expansion of a “cloud” whose dimen-
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sions are large com- pared with the mean free path of particles in it; correspond-
ingly, this stage should be described by equations of relativistic hydrodynamics.
The solution of these equations required a number of ingenious techniques as well
as a thorough analysis. Landau used to say that this study cost him more effort
than any other problem that he had ever solved.

According to classical mechanics and statistics, a change in the pattern of move-
ment of free electrons in a magnetic field cannot result in the appearance of new
magnetic properties of the system. Landau was the first to elucidate the character
of this motion in a magnetic field for the quantum case, and to show that quantiza-
tion completely changes the situation, resulting in the appearance of diamagnetism
of the free electron gas (“Landau diamagnetism” as this effect is now termed) [4].
The same study qualitatively predicted the periodic dependence of the magnetic
susceptibility on the intensity of the magnetic field when this intensity is high.
At the time (1930) this phenomenon had not yet been observed by anyone, and
it was experimentally discovered only later (the De Haas Van Alphen effect); a
quantitative theory of this effect was presented by Landau in a later paper [38].

But the most significant contribution that physics owes to Landau is his theory
of quantum liquids. The significance of this new discipline at present is steadily
growing; there is no doubt that its development in recent decades has produced a
revolutionary effect on other domains of physics as well — on solid-state physics
and even on nuclear physics.

Concluding this brief and far from complete survey, it only remains to be repeated
that to physicists there is no need to emphasize the significance of Landau’s con-
tribution to theoretical physics. His accomplishments are of lasting significance
and will for ever remain part of science.



Chapter 1

The Equation of Motion

1.1 Generalized coordinates

The number of independent quantities which must be specified in order to define
uniquely the position of any system is called the number of degrees of freedom.

1.2 The principle of least action

The most general formulation of the law governing the motion of mechanical sys-
tems is the principle of least action or Hamilton’s principle, according to
which every mechanical system is characterized by a definite function

L(q1, q2, ..., qs, q̇1, q̇2, ..., q̇s, t),

or briefly L(q, q̇, t), and the motion of the system is such that a certain condition
is satisfied.

Let the system occupy, at the instants t1 and t2, positions defined by two sets
of values of the co-ordinates, q(1) and q(2). Then the condition is that the system
moves between these positions in such a way that the integral

S =

∫ t2

t1

L(q, q̇, t)dt

takes the least possible value. The function L is called Lagrangian(拉拉拉格格格朗朗朗日日日函函函
数数数) of the system concerned, and the integral is called the action(作作作用用用量量量).
根据最小作用量原理推得(对推导过程有一个疑问：公式 2.3 为什么成立？原书
有一句解释：Since, for t = t1 and for t = t2, all the functions 2.2 must take the

12



CHAPTER 1. THE EQUATION OF MOTION 13

values q(1) and q(2) respectively, 不理解):

d

dt
(
∂L

∂q̇
)− ∂L

∂q
= 0

When the system has more than one degree of freedom, the s different functions
qi(t) must be varied independently in the principle of least action. We then evi-
dently obtain s equations of the form

d

dt
(
∂L

∂q̇i
)− ∂L

∂qi
= 0

These are the required differential equations, called in mechanics Lagrange’s
equations(拉拉拉格格格朗朗朗日日日方方方程程程)(In the calculus of variations they are Euler’s equations
for the formal problem of determining the extrema of an integral of the form (2.1))

If the Lagrangian of a given mechanical system is known, the equations (2.6)
give the relations between accelerations, velocities and coordinates, i.e. they are
the equations of motion of the system.

Mathematically, the equations (2.6) constitute a set of s second-order equations for
s unknown functions qi(t). The general solution contains 2s arbitrary constants.
To determine these constants and thereby to define uniquely the motion of the
system, it is necessary to know the initial conditions which specify the state of the
system at some given instant, for example the initial values of all the coordinates
and velocities.

Thus the Lagrangian is defined only to within an additive total time derivative of
any function of co-ordinates and time. (可见 , 拉格朗日函数仅可以定义到相差
一个对时间和坐标的任意 函数的时间全导数项.)

1.3 Galileo’s relativity principle

The problem naturally arises of finding a frame of reference in which the laws of
mechanics take their simplest form.
It is found, however, that a frame of reference can always be chosen in which space
is homogeneous and isotropic and time is homogeneous. This is called an inertial
frame. In particular, in such a frame a free body which is at rest at some instant
remains always at rest.
接下来推导拉格朗日函数的具体形式：
We can now draw some immediate inferences concerning the form of the La-
grangian of a particle, moving freely, in an inertial frame of reference. The homo-
geneity of space and time implies that the Lagrangian cannot contain explicitly
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either the radius vector r of the particle or the time t, i.e. L must be a function of
the velocity v only. Since space is isotropic, the Lagrangian must also be indepen-
dent of the direction of v, and is therefore a function only of its magnitude, i.e. of
v2 = v2:

L = L(v2)

Since the Lagrangian is independent of r, we have ∂L/∂r = 0, and so Lagrange’s
equation:

d

dt
(
∂L

∂q̇
)− ∂L

∂q
= 0

becomes:
d

dt
(
∂L

∂v
) = 0,

whence ∂L/∂v = constant.
Since ∂L/∂v is a function of the velocity only(从前面分析的惯性系的特点得出的
结论), it follows that:

v = constant.

Thus we conclude that, in an inertial frame, any free motion takes place with a ve-
locity which is constant in both magnitude and direction. This is the law of inertia.

Experiment shows that not only are the laws of free motion the same in the two
frames, but the frames are entirely equivalent in all mechanical re- spects. Thus
there is not one but an infinity of inertial frames moving, relative to one another,
uniformly in a straight line. In all these frames the properties of space and time
are the same, and the laws of mechanics are the same. This constitutes Galileo’s
relativity principle, one of the most important principles of mechanics.

The assumption that time is absolute is one of the foundations of classical me-
chanics.(The assumption does not hold good in relative mechanics)

Galileo’s relativity principle can be formulated as asserting the invariance of the
mechanical equations of motion under any such transformation.(伽利略相对性原
理可以表述为: 力学运动方程在伽利略变换下具有不变性.)

1.4 The Lagrangian for a free particle

中文翻译书里公式 (4.3) 有问题， 看半天不理解，回到英文版原书才发现翻译
书里那样写不对.
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1.5 The Lagrangian for a system of particles

为了描述封闭质点系内质点间的相互作用,可以在自由质点系的拉格朗日函
数(4.2)中增加坐标的某一函数(根据相互作用的性质确定), 将这个函数记为 −U
(势能项在这里直接就加进来了，不理解原因)
知道拉格朗日函数后就可以建立运动方程——推导出牛顿方程
势能可以增减任意常数而不改变运动方程(这是在section2末讲到的拉格朗日函数
不确定性的特殊情况).选择这个任意常数的最自然和最通用的方法是,当无限增
大质点间距离时势能趋向于零.

1.6 Problems



Chapter 2

Conservation Laws

2.1 Energy

DURING the motion of a mechanical system, the 2s quantities qi and q̇i; (i =
1, 2, ..., s) which specify the state of the system vary with time. There exist, how-
ever, functions of these quantities whose values remain constant during the motion,
and depend only on the initial conditions. Such functions are called integrals of
the motion.
由时间的均匀性导出的守恒定律.
其中用到Euler’s theorem on homogeneous functions,齐次函数的欧拉定理.

2.2 Momentum

A second conservation law follows from the homogeneity of space（空间的均匀
性）. By virtue of this homogeneity, the mechanical properties of a closed system
are unchanged by any parallel displacement of the entire system in space. Let us
therefore consider an infinitesimal displacement ε, and obtain the condition for the
Lagrangian to remain unchanged.

这两节分别从时间和空间的均匀性出发，由基本的拉格朗日方程推导出能量
守恒和动量守恒原理。而时间和空间的均匀性又是由前面对惯性参考系的选取
的讨论得到的结论。后面由空间的各向同性，推导出了角动量守恒定律。

In particular, for a system of only two particles, F1 +F2 = 0: the force exerted by
the first particle on the second is equal in magnitude, and opposite in direc- tion,
to that exerted by the second particle on the first. This is the equality of action
and reaction (Newton’s third law).
到此，牛顿三定律，还有自由运动质点系统的能量守恒和动量守恒定理全部由

16
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拉格朗日方程和数学工具推导出来!

If the motion is described by generalised co-ordinates qi, the derivatives of the
Lagrangian with respect to the generalised velocities

pi = ∂L/∂q̇i

are called generalised momenta, and its derivatives with respect to the generalised
co-ordinates

Fi = ∂L/∂qi

are called generalised forces. In this notation, Lagrange’s equations are

ṗi = Fi

In Cartesian co-ordinates the generalised momenta are the components of the
vectors Pa. In general, however, the pi are linear homogeneous functions of the
generalised velocities q̇i, and do not reduce to products of mass and velocity.

2.2.1 Problem

2.3 Center of mass

If the total momentum of a mechanical system in a given frame of reference is
zero, it is said to be at rest relative to that frame. This is a natural generalisation
of the term as applied to a particle. Similarly, the velocity V given by (8.2) is the
velocity of the ”motion as a whole” of a mechanical system whose momentum is
not zero. Thus we see that the law of conservation of momentum makes possible a
natural definition of rest and velocity, as applied to a mechanical system as a whole.

The law of conservation of momentum for a closed system can be formulated
as stating that the centre of mass of the system moves uniformly in a straight line.
In this form it generalises the law of inertia derived in §3 for a single free particle,
whose ”centre of mass” coincides with the particle itself.

2.3.1 Problem

Find the law of transformation of the action S from one inertial frame to another.

Sorurion: The Lagrangian is equal to the difference of the kinetic and poten-
tial energies, and is evidently transformed in accordance with a formula analogous
to (8.5):

L = L′ + V · P ′ + µV 2

2
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Integrating this with respect to time, we obtain the required law of transformation
of the action:

S = S ′ + µV ·R′ + µV 2

2
t

where R′ is the radius vector of the centre of mass in the frame K ′.

2.4 Angular momentum

Let us now derive the conservation law which follows from the isotropy of space（空
间的各项同性）. This isotropy means that the mechanical properties of a closed
system do not vary when it is rotated as a whole in any manner in space. Let
us therefore consider an infinitesimal(分析这类问题惯用的思路) rotation of the
system, and obtain the condition for the Lagrangian to remain unchanged.

There are no other additive integrals of the motion. Thus every closed system
has seven such integrals: energy, three components of momentum, and three com-
ponents of angular momentum.

2.5 Mechanical similarity

Multiplication of the Lagrangian by any constant clearty does not affect the equa-
tions of motion. This fact (already mentioned before) makes possible, in a number
of important cases, some useful inferences concerning the properties of the motion,
without the necessity of actually integrating the equations.
Such cases include those where the potential energy is a homogeneous function of
the co-ordinates, i.e. satisfies the condition

U (αr1, αr2, · · · , αrn) = αkU (r1, r2, · · · , rn)

where α is any constant and k the degree of homogeneity of the function.

Let us carry out a transformation in which the co-ordinates are changed by a
factor α and the time by a factor β:

ra → αra, t→ βt

. Then all the velocities va = dra/dt are changed by a factor α/β, and the kinetic
energy by a factor α2/β2. The potential energy is multiplied by αk. If α and β

are such that α2/β2 = αk, ie. β = α1− 1
2
k, then the result of the transformation is

to multiply the Lagrangian by the constant factor αk, i.e. to leave the equations
of motion unaltered.
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A change of all the co-ordinates of the particles by the same factor corresponds to
the replacement of the paths of the particles by other paths, geometrically similar
but differing in size. Thus we conclude that, if the potential energy of the system
is a homogeneous function of degree k in the (Cartesian) co- ordinates, the equa-
tions of motion permit a series of geometrically similar paths, and the times of the
motion between corresponding points are in the ratio

t′

t
=

(
l′

l

)1−k/2

where l′/l is the ratio of linear dimensions of the two paths. Not only the times
but also any mechanical quantities at corresponding points at corresponding times
are in a ratio which is a power of l′/l. For example, the velocities, energies and
angular momenta are such that

v′/v = (l′/l)
1
2
k
, E ′/E = (l′/l)

k
, M ′/M = (l′/l)

1+ 1
2
k

The following are some examples of the foregoing.

As we shall see later, in small oscillations the potential energy is 2 quadratic
function of the co-ordinates (k = 2). From (10.2) we find that the period of such
oscillations is independent of their amplitude.

In a uniform field of force, the potential energy is a lincar function of the co-
ordinates (see (5.8)), ie. k = 1. From (10.2) we have t′/t =

√
(l′/l), Hence, for

example, it follows that, in fall under gravity, the time of fall is as the square root
of the initial altitude.

In the Newtonian attraction of two masses or the Coulomb interaction of two
charges, the potential energy is inversely proportional to the distance apart, i.e.
it is a homogeneous function of degree k = −1. Then t′/t = (l′/l)3/2, and we can
state, for instance, that the square of the time of revolu- tion in the orbit is as the
cube of the size of the orbit (Kepler’s third law).

If the potential energy is a homogeneous function of the co-ordinates and the
motion takes place in a finite region of space, there is a very simple relation be-
tween the time average values of the kinetic and potential energies, known as the
vrial theorem.

U =
2

k + 2
E, T =

k

k + 2
E

which express U and T in terms of the total energy of thesystem.
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In particular, for small oscillations (k = 2) we have T = U , i.e. the mean val-
ues of the kinetic and potential energies are equal. For a Newtonian interaction
(k = −1)2T = −U , and E = −T , in accordance with the fact that, in such an in-
teraction, the motion takes place in a finite region of space only if the total energy
is negative.

2.5.1 Problems



Chapter 3

Interaction of the equations of
motions

3.1 Motion in one dimension

3.1.1 Problems

这几题主要就是套

t =

√
m

2

∫
dx√

E − U(x)
+ const

这个公式，而此公式又是由

dx

dt
=

√
2

m
[E − U(x)]

积分而来，
mẋ2

2
+ U(x) = E

L =
mẋ2

2
− U(x)

3.2 Determination of the potential energy from

the period of oscillation

Let us consider to what extent the form of the potential energy U(x) of a field
in which a particle is oscillating can be deduced from a knowledge of the period
of oscillation T as a function of the energy E. Mathematically, this involves the
solution of the integral equation (11.5), in which U(x) is regarded as unknown and
T (E) as known.

21
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3.3 The reduced mass

A complete general solution can be obtained for an extremely important problem,
that of the motion of a system consisting of two interacting particles (the two-body
problem).

As a first step towards the solution of this problem, we shall show how it can
be considerably simplified by separating the motion of the system into the motion
of the centre of mass and that of the particles relative to the centre of mass.

3.4 Motion in a central field

Any generalised co-ordinate g; which does not appear explicitly in the Lagrangian—
is said to be cyclic.(拉格朗日函数不显含的广义坐标称为循环坐标)

This law has a simple geometrical interpretation in the plane motion of a sin-
gle particle in a central field. The expression 1

2
r · rdφis the area of the sector

bounded by two neighbouring radius vectors and an element of the path. Calling
this area df , we can write the angular momentum of the particle as

M = 2mḟ

where the derivative ḟ is called the sectorial velocity. Hence the conservation of
angular momentum implies the constancy of the sectorial velocity: in equal times
the radius vector of the particle sweeps out equal areas (Kepler’s second law).

In general, therefore, the path of a particle executing a finite motion is not closed.
It passes through the minimum and maximum distances an infinity of times, and
after infinite time it covers the entire annulus between the two bounding circles.
The path shown in the following is an example.
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There are only two types of central field in which all finite motions take place
in closed paths. They are those in which the potential energy of the particle varies
as 1/r or as r2. The former case is discussed in section 15; the latter is that of the
space oscillator (see section 23, Problem 3).

3.4.1 Problems

3.5 Kepler’s problem

An important class of central fields is formed by those in which the poten- tial
energy is inversely proportional to r, and the force accordingly inversely propor-
tional to r2. They include the fields of Newtonian gravitational attraction and of
Coulomb electrostatic interaction; the latter may be either attractive or repulsive.

ϕ =

∫
(M/r2) dr√

2m[E − U(r)]−M2/r2
+ const

U = −α/r

将 U 代入得

ϕ = arccos
M/r −mα/M√
2mE +m2α2/M2

+

选择合适的起点使常数项为0，并引入记号

p =
M2

mα
, e =

√
1 +

2EM2

mα2

轨道方程可重新写为：
p/r = 1 + e cosϕ

This is the equation of a conic section with one focus at the origin; 2p is called
the latus rectum of the orbit and e the eccentricity. Our choice of the origin of Φ
is seen from (15.5) to be such that the point where Φ = 0 is the point ncarest to
the origin (called the perihelion).

It is seen from (15.4) that, if E < 0, then the eccentricity e < 1, i.e. the or-
bit is an ellipse (Fig. 11) and the motion is finite, in accordance with what has
been said earlier in this section.

3.5.1 Problems



Chapter 4

Collisions Between Particles

4.1 Disintegration of particles

4.2 Elastic collisions

4.3 Scattering

As already mentioned in last section, a complete calculation of the result of a
collision between two particles (i.e. the determination of the angle χ) requires the
solution of the equations of motion for the particular law of interaction involved.

散射截面的定义

4.3.1 Problems

The scattering is isotropic in the C system. On integrating do over all angles,
we find that the total cross-section σ = πa2, in accordance with the fact that the
”impact area” which the particle must strike in order to be scattered is simply the
cross-sectional area of the sphere.

4.4 Rutherford’s formula

One of the most important applications of the formulae derived above is to the
scattering of charged particles in a Coulomb field. Putting in (18.4) U = α/r and
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effecting the elementary integration, we obtain

ϕ0 = arccos

α
mv2∞ρ√

1 +
(

α
mv2∞ρ

)2
Following is the Rutherford’s formula:

dσ = π

(
α

mv2∞

)2 cos
(
χ
2

)
sin3

(
χ
2

)dχ
which gives the effective cross-section in the frame of reference which the centre
of mass of the colliding particles is at rest.

4.4.1 Problems

4.5 Small-angle scattering

4.5.1 Problems



Chapter 5

Small Oscillations

5.1 Free oscillations in one dimension

Stable equilibrium corresponds to a position of the system in which its potential
energy U(q) is a minimum. A movement away from this position results in the
setting up of a force −dU/dq which tends to return the system to equilibrium.

The use of exponential factors is mathematically simpler than that of trigono-
metrical ones because they are unchanged in form by differentiation. So long as
all the operations concerned are linear (addition, multiplication by constants, dif-
ferentiation, integration), we may omit the sign re throughout and take the real
part of the final result.

26
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5.1.1 Problems

5.2 Forced oscillations

5.2.1 Problems

5.3 Oscillations of systems with more than one

degree of freedom

5.3.1 Problems

5.4 Vibrations of molecules

If we have a system of interacting particles not in an external ficld, not all of its
degrees of freedom relate to oscillations. A typical example is that of molecules.
Besides motions in which the atoms oscillate about their positions of equilibrium in
the molecule, the whole molecule can execute translational and rotational motions.

In solving a mechanical problem of molecular oscillations, it is convenient to elim-
inate immediately the translational and rotational degrees of freedom.

5.4.1 Problems

5.5 Damped oscillations
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